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A particular case of Ruhe’s convergent splitting is presented, which gives a rapidly converg- 
ing method of estimating the lowest eigenvalues and corresponding vectors of a large her- 
mitian matrix, when a leading principal minor of that matrix provides a good approximation 
to the desired eigensolution. This is particularly relevant, for example, to the total energy 
calculations of solids. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

In solid state physics matrices arise (e.g., in total energy calculations [l]) which 
are large and hermitian, and for which the lowest few eigensolutions are required. 
They are generated in a discretisation process which has the property that suc- 
cessive approximations of increasing accuracy incorporate the earlier matrix as a 
leading principal minor. Thus lower dimensional matrix problems may be solved to 
give an initial estimate of the more accurate solution required. This is a common 
situation in finite difference and expansion methods for solving differential 
equations, when one may use relatively few points to obtain a crude approximate 
solution, and then add points or terms to obtain a more accurate one. 

The present version of Ruhe’s splitting algorithm [2] allows the solution to the 
smaller problem to be efficiently incorporated in the calculation of the eigensolution 
of the large one of real interest. In its block form it may be regarded as a form of 
subspace iteration [3], with shifts of origin (as in inverse iteration) designed to 
accelerate convergence to the eigenvalues of interest; these are obtained from a 
Rayleigh-Ritz type of formulation from the iteration vectors. The method may also 
be viewed as an iterative improvement of the “folding-down” of physical pertur- 
bation theory [4] or as repeated application of Brillouin-Wigner perturbation 
theory, (see, e.g., Ziman [S)). 

This algorithm requires only the equivalent of a matrix-vector product at each 
step, while inverse iteration and recent improvements to the Lanczos algorithm 
[6, 71 require a matrix factorisation, an order n3 process. For the large, full 
matrices arising in total energy calculations this would be prohibitively expensive. 
While the ordinary Lanczos algorithm [3] is quite effective on these problems, it 
still takes more steps than does, for instance, inverse iteration. Some work is 
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typically involved in providing approximations to eigenvalues at the top of the 
spectrum, which are not of interest. The present algorithm is an attempt to combine 
some of the speed of inverse iteration with the efficiency of the Lanczos a~~or~t~rn 
for problems with the structure defined above. 

The rate of convergence of the algorithm appears to be close to that of inverse 
iteration, given the same starting approximation, but avoids the time-~ons~rn~n~ 
matrix inversion that method requires. 

In the following sections we first present the algorithm, both in a simple single 
vector form and a block form. Then the relationship to fording-down is undulated, 
and finally we give some numerical results for some relatively small (of dimension 
about 200) test matrices provided by R. Needs. 

2. THE ALGORITHM 

The matrix is partitioned so that the leading principal minor is treated “exactly,” 
while the rest of the matrix is incorporated in the iterative scheme to find the lowest 
eigenvalues. This corresponds to a “block” Gauss-Seidel splitting in the sense of 
Ruhe [2]. The II x y1 matrix N of the eigenproblem is first partitioned so that A is 
PI x m and B is IZ -m x n - wz, and the n-vectors correspondingly (f- indicates com- 
plex conjugate transpose and the superscript refers to the partitioned vectors) 

and vectors X= (2.1) 

The dimension, m, of A is assumed large enough that its eigensolution provides an 
adequate initial approximation to that of H, while it is small enough that A can be 
retained in fast store, and that time spent in its factorisation is not excessive. is 
further partitioned into its diagonal elements (D) and its strict upper and lower 
triangles (U and Ut ) 

B=D+U+U+. 42.2) 

With this partitioning scheme we have a matrix which is computational~y con- 
venient to invert at each step of the algorithm. The two matrices of the splitting are, 
in uhe’s notation at the iteration step s, 

v = 
i 
A-(A,+r$“)l C 

5 0 D + U - (A. + ~‘~1) I s s 
(2.3) 

The iteration is then Vsxs+ 1 = H,x,. 
The two Y parameters are small and are chosen at each step to avoid singularity 

of the matrix to be inverted. Note also that the Gauss-Seidel algorithm proceeds 



140 C. M. M. NEX 

from the bottom-up, which agrees with the ideas of physical perturbation theory. 
Explicitly, the sth step of Ruhe’s procedure for a single vector becomes 

(D-i,l--r~*~I)~,2+~= -C+ X,’ - (U+ + rc2)Z) x,2 - Ux:, , (2.4a) 

(A-A,Z-r~l)I)xf+,= -Cx~+I-r~l)x,l. (2.4b) 

The Rayleigh quotient can be used to estimate the next eigenvahte approximation, 
3, s+1= x:+1 HXs+I, as all the necessary matrix-vector products have been 
calculated in forming x, + r, 

(r(l) + A,) x1+ s stl x::+l+x~l,,Cx,Z+~+x,2t+lDx,2+1 

/z ,+,=Real i + 2x51, l Uxf, r - rjl) xfi, 1 xi J 
XI+, x,+1 

. (2.4~) 

As all the matrix vector products in (2.4~) have been calculated in the earlier steps, 
the total time is dominated by that required for a matrix times a vector. The inver- 
sion implicit in (2.4b) may be computed at each step of the iteration (using 
Gaussian elimination, e.g.), or it may be conveniently effected using a complete 
eigensolution of A, calculated once at the commencement of the process (using 
reduction to tridiagonal form and the QR algorithm). In either case A is a relatively 
small matrix whose size determines which of these approaches is the more 
appropriate: the time for this computation should be much less than that required 
in the other parts of the operation-that for a large matrix times a vector mul- 
tiplication. 

In the block version of the algorithm a small two-sided eigenproblem is construc- 
ted at each step of the algorithm (R and A are the obvious diagonal matrices and X 
is the matrix whose columns are the vector iterates, with the superscripts referring 
to the partitioning) 

DX;2+i-x+i (A,+R;)= -C+X;-~zR,2-Ut~-U~+i 

A x+1-%,I (n,+R;)= -cg+,-xpRj. 

Instead of A,+ i the matrix N* = $+ , H X, + i can be accumulated as 

H*=X~‘:,X~+,(n,+Rf)+(X~~,C~+,,++~f,,D~+1 

+c~t,,u~+,>++~‘:,u~+,-x~~,x,‘Rj. 

The small (WI x m) eigenproblem is solved (with S,*, , = E+ i X,, i) 

HZ+, Ys,,=%+, Ys+l As+1 

(2.5a) 

(2.5b) 

(2.5~) 

V-6) 

to give an orthonormal set of eigenvectors Y,, i (the problem is still hermitian) and 
a new approximation to the eigenvalues A, + i . Then the new iterate X,*, i is given 
by Xz+l=Xstl Y,,,. The matrix X,*,, and new approximation to the eigenvalues 
‘4 S+ i have the useful property that they satisfy 

A s+l =X,*l, HX,*,,. 
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3. RELATIONSHIP TO QTHER NETHODS 

The folding-down algorithm [4] relates the eigensolution of a smaller, non-linear 
problem, to that of the original problem using rillouin-Wigner perturbation 
theory [S] 

[A + C(U- B)-’ c+] x = ix. (3.1) 

The inversion implicit in this formula is then approximated in some way, usually by 
choosing a value of ;1 close to the eigenvalue(s) of interest and then computing the 
inverse either of (L-B) or of the diagonal approximation to it. In the latter case 
we obtain a simple way of calculating a second approximation, L,, to an eigenvalue 
of H, from the first approximation (A, is an eigenvalue, and x0 an eigenvector of the 
sub-matrix A) 

i”l=&j+xI)[c(&J-D)-l C’] xg 63.2) 

This is the same result we would obtain by using only the first two terms in (2.4~) 
and neglecting IJ in (2.4a), taking the vectors xi =x0 and xS = 0 (setting the shifts 
,(‘I to zero). Folding down may thus be viewed as the first step of a simplified 
splitting procedure. This straightforward approximation provides an effective first 
improvement to the eigenvalue estimate in any iterative scheme, and we advocate 
using it to start the current process. 

-4 method proposed by Davidson [S], before Ruhe [2] provided a general 
theory of such algorithms, proceeds with a Jacobi-type splitting, rather than the 
Gauss-Seidel one of the current method. As in the case of linear equations, we 
would expect the latter to be significantly better than the former, particularly with 
the bottom-up application particularly suitable for matrices arising in the total 
energy calculations [ 11, In addition Ruhe’s theory [Z] enables shifts (r, of (2.3)) to 
be incorporated to avoid problems of near-singularity in the matrix implicitly inver- 
ted in each algorithm. Davidson’s method also starts with the solution of the eigen- 
problem for a submatrix, but without the folding-down refinement. The dimension 
of this matrix is the same as the number of eigenvectors required, but at each step 
of the algorithm the dimension of the sub-eigenproblem increases by 1. In the new 
splitting we suggest initially solving a slightly larger sub-problem, but at each 
iterative step the dimension of the eigenproblem is only the number of eigenvectors 
required. 

4. NUMERICAL RESULTS 

Three test matrices of dimension 180, 210, and 211 were kindly provided by 
Richard Needs, and were used to assess the performance of the algorithm in some 
practical examples. The new method was compared with inverse iteration from the 
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TABLE 1 

Number of Iterations Needed to Achieve an Accuracy of 10S6 in Corresponding Eigenvalues of 
Three Test Matrices, Using Inverse lteration and the New Splitting. 

Eigenvalue 

180 matrix 210 matrix 

inverse new inverse new 
iteration splitting iteration splitting 

211 matrix 

inverse new 
iteration splitting 

same starting vectors, and with only one matrix factorisation per eigenvalue (with 
shift determined by folding-down) in the latter algorithm. The diagonal matrices 
(shifts) Rg in (2.5) were chosen automatically so that /1:+ R:. was not in a 
neighbourhood of zero (the performance was not sensitive to the precise size of the 
shifts, as long as they were reasonably small). Table I gives the number of iterations 
per eigenvalue for each of the first 8 eigenvalues of each matrix and Table II shows 
the approximations to the eigenvalues by the 21 x 21 leading minor and the result 
of folding down. From the same starting vectors, both inverse iteration and the new 
block splitting converged to the same eigensolutions. 

A standard Lanczos procedure (EAlSAD) from the Harwell subroutine library 
[9] was also used for comparison. On the test matrices this typically used 65 
matrix-vector products, compared with the 45 (see Table I) needed by the new 
algorithm. The computation time for both algorithms was dominated by these 
figures. Typical overall timings on an IBM 3081 (finding the lowest 8 eigensolutions 
of a matrix of order 200) were 8 set for the new algorithm, while for inverse 
iteration with only one matrix factorisation per eigenvalue, the figure was 16 sec. 
The standard NAG [lo] reduction to tridiagonal form and subsequent solution 
took of order 20 sec. 

As the results of Table I indicate, the new splitting requires a few more iterations 
per eigenvalue than inverse iteration, which converges reasonably fast, given the 
good starting approximations. The factor seems to vary from unity to 1.5. The large 
saving in time for the present algorithm comes from not needing to perform the 
initial factorisation of the matrix (taking of order n3 operations) used in inverse 
iteration. The time per step is dominated by that required for a matrix-vector mul- 
tiplication (of order n* operations) and as these are reasonably straightforward they 
can be implemented efficiently in “pipe-lining” and “parallel” computers. The block 
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TABLE 11 

Lowest Eigenvalues of Test Matrices and Their Initial Approximations 

IMatrix size 21 x 21 sub-matrix Folding back Accurate 

180X 180 -0.0593164 -0.16579 
0.5256818 0.45172 
0.6421063 0.57933 
0.7121972 0.63058 
0.9912691 0.88472 
1.0476261 0.92151 
1.0890217 0.98800 
1.2466530 1.1104 

210x210 0.0418995 -0.056156 
0.1198890 0.054332 
0.1650400 0.099727 
0.1988641 0.13539 
0.2545238 0.20033 
0.2811117 0.24499 
0.3272672 0.29675 
0.4647282 0.36469 

211X21E 0.001148074 -0.37224 
0.003747227 -0.41601 
0.003967037 -0.41764 
0.004772899 -0.41716 
0.06144023 -0.38896 
O.Oti265675 -0.38878 
0.06303806 -0.38673 
0.5453997 0.41891 

-0.1468799 
0.4507970 
0.5748814 
0.6238321 
0.8814751 
0.9269680 
0.9747979 
1.0973134 
1.2052475 
1.2948314 

-0.045E855 
0.0594344 
0.1049581 
0.1416183 
0.2043461 
0.2415569 
0.2921596 
0.3502600 
0.3696753 
0.3874926 

-0.6471234 
-0.4977474 
-0.5036803 
-0.5031567 
-0.5922293 
-0.5918449 
-0.5917248 

0.3409741 
-0.5183999 

O.3411610 
0.3417584 

form of the algorithm enables degenerate and near-degenerate eigenvalues to be 
computed with no special modifications. 

or the type of large matrices occurring in total energy calculations, where 8 
rmcipal minor provides a reasonable approximation to the eigensolution, we con- 

clude that the new splitting can provide advantages in speed over other metho 
finding the lowest few eigenvalues and vectors. 
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